Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Eur J Neurol ; : e16322, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726639

RESUMO

BACKGROUND AND PURPOSE: This study aimed to investigate the clinical efficacy and safety of telitacicept in patients with generalized myasthenia gravis (gMG) who tested positive for acetylcholine receptor antibodies or muscle-specific kinase antibodies and were receiving standard-of-care therapy. METHODS: Patients meeting the eligibility criteria were randomly assigned to receive telitacicept subcutaneously once a week for 24 weeks in addition to standard-of-care treatment. The primary efficacy endpoint was the mean change in the quantitative myasthenia gravis (QMG) score from baseline to week 24. Secondary efficacy endpoints included mean change in QMG score from baseline to week 12 and gMG clinical absolute score from baseline to week 24. Additionally, safety, tolerability and pharmacodynamics were assessed. RESULTS: Twenty-nine of the 41 patients screened were randomly selected and enrolled. The mean (± standard deviation [SD]) reduction in QMG score from baseline to week 24 was 7.7 (± 5.34) and 9.6 (± 4.29) in the 160 mg and 240 mg groups, respectively. At week 12, mean reductions in QMG scores for these two groups were 5.8 (± 5.85) and 9.5 (± 5.03), respectively, indicating rapid clinical improvement. Safety analysis revealed no adverse events leading to discontinuation or mortalities. All patients showed consistent reductions in serum immunoglobulin (Ig) A, IgG and IgM levels throughout the study. CONCLUSION: Telitacicept demonstrated safety, good tolerability and reduced clinical severity throughout the study period. Further validation of the clinical efficacy of telitacicept in gMG will be conducted in an upcoming phase 3 clinical trial.

2.
Org Lett ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717147

RESUMO

Fusobacterium nucleatum, a colorectal-cancer-associated oncomicrobe, can trigger or accelerate numerous pathologies. We report the first synthesis of a conjugation-ready disaccharide containing six amino groups from F. nucleatum ATCC 23726 O-antigen. Rare 2,3-diamido-d-glucuronic acid amide and 2-acetamido-4-amino-d-fucose were synthesized from d-glucosamine through configuration inversion, nucleophilic substitution, C6 oxidation, and C6 deoxygenation. A judicious choice of protecting groups and reaction conditions enabled the selective installation of N-acetyl, N-propanoyl, N-formyl, and carboxamido groups.

3.
Discov Nano ; 19(1): 68, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625606

RESUMO

The green synthesis of metallic nanoparticles is attributable towards diverse applications in various fields, recently. In this research, we report simple and eco-friendly synthesis of chromium oxide (Cr2O3) nanoparticles using the fruit extract of Phyllanthus emblica as a reducing and capping agent. The absorbance peaks at 350 nm and 450 nm validated the nanoparticle formation in UV-visible spectrum. FTIR spectrum revealed the nature of functional groups. The crystalline properties of nanoparticles were ascertained by XRD analysis. EDX spectrum corroborated the elemental composition of nanoparticles in which chromium and oxygen constituted 68% of total weight. SEM images demonstrated agglomeration of nanoparticles resulting in the formation of large irregularly shaped flakes. Cr2O3 nanoparticles demonstrated excellent antimicrobial properties against 11 bacterial isolates and 1 fungal isolate. The largest inhibition zone (53 mm) was measured against A. baumannii while the smallest inhibition zone (26 mm) was recorded against S. aureus. Minimum inhibitory concentration (MIC) values were < 1 µg/ml for all microbes. However, the synthesized nanoparticles did not reveal synergism with any of the selected antibiotics (FICI values > 1). Nanoparticles possessed potent anti-biofilm powers with maximum (77%) inhibition of E. coli biofilms and minimum (45%) inhibition of S. enterica biofilms. Photocatalytic activity of Cr2O3 nanoparticles was evaluated to determine their efficacy in environmental bioremediation. Outcomes demonstrated degradation of methyl red (84%) but not of methylene blue dye. Furthermore, the Cr2O3 nanoparticles displayed considerable antioxidant (43%) as well as anti-inflammatory (44%) potentials. Hence, the present study accounts for the versatile applications of P. emblica-mediated Cr2O3 nanoparticles which could be pursued for future biomedical and environmental applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38662322

RESUMO

Osteolysis resulting from wear particles and subsequent aseptic loosening is a leading cause of revision surgery of artificial joints. The underlying pathogenesis of particle-induced osteolysis (PPO) has remained largely uncertain. Addressing how to mitigate osteolysis caused by wear particles presents a significant challenge for orthopedic surgeons. This study aimed to explore the molecular mechanism by which Angiopoietin (Ang-1) inhibits osteoclast activation to alleviate osteolysis. RAW264.7 mouse macrophages were stimulated with LPS or RANKL to induce osteoclast formation. Additionally, titanium (Ti) particles (50 mg) were subperiosteally implanted around the cranial suture of mice to establish a calvarial osteolysis model. Ang-1, a member of the pro-angiogenic factor protein family and an important inflammatory regulator molecule, was utilized in this model. TRAP staining was utilized to detect osteoclast activation, while a western blot was conducted to identify key proteins associated with mitophagy and pyroptosis. Scanning electron microscopy was employed to observe the morphology and dimensions of Ti particles. Additionally, a combination of micro-CT, H&E, Masson's trichrome, and immunohistochemical staining techniques were applied to analyze the calvarial samples. Results indicated that Ang-1 could inhibit LPS- or RANKL-induced osteoclastogenesis and alleviate Ti particle-induced calvarial osteolysis in mice. TBK-1, a key signaling molecule involved in initiating mitophagy, was found to be mechanistically enhanced by Ang-1 through promoting TBK-1 phosphorylation in macrophages. This process inhibited AIM2 inflammasome-mediated pyroptosis and impeded osteoclastogenesis. Overall, this research uncovers a novel mechanism by which Ang-1 can attenuate inflammatory osteolysis, potentially offering a new therapeutic approach for PPO.

5.
Bioresour Technol ; 401: 130704, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636879

RESUMO

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.

6.
Adv Sci (Weinh) ; : e2307830, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588016

RESUMO

Reconfiguration of architected structures has great significance for achieving new topologies and functions of engineering materials. Existing reconfigurable strategies have been reported, including approaches based on heat, mechanical instability, swelling, origami/kirigami designs, and electromagnetic actuation. However, these approaches mainly involve physical interactions between the host materials and the relevant stimuli. Herein, a novel, easy-manipulated, and controllable reconfiguration strategy for polymer architectures is proposed by using a chemical reaction of host material within a hydrogel reactive microenvironment. 3D printed polycaprolactone (PCL) lattices transformed in an aqueous polyacrylamide (PAAm) hydrogel precursor solution, in which ultraviolet (UV) light triggered heterogeneous grafting polymerization between PCL and AAm. In situ microscopy shows that PCL beams go through volumetric expansion and cooperative buckling, resulting in transformation of PCL lattices into sinusoidal patterns. The transformation process can be tuned easily and patterned through the adjustment of the PCL beam diameter, unit cell width, and UV light on-off state. Controlling domain formation is achieved by using UV masks. This framework enables the design, fabrication, and programming of architected materials and inspires the development of novel 4D printing approaches.

8.
Genomics ; 116(3): 110849, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679345

RESUMO

Paulownia fortunei is an ecologically and economically valuable tree cultivated for its rapid growth and high-quality timber. To enhance Paulownia germplasm, we have developed the elite variety QingT with patented advantages in growth rate and apical dominance. To illuminate the genetic basis of QingT's superior traits, here we harness comparative population genomics to analyze genomic variation patterns between QingT and common Paulownia. We performed whole-genome re-sequencing of 30 QingT and 30 common samples, detecting 15.6 million SNPs and 2.6 million indels. Phylogeny and population structure analyses robustly partitioned common and QingT into distinct groups which indicate robust genome stabilization. QingT exhibited reduced heterozygosity and linkage disequilibrium decay compared to common Paulownia, reflecting high recombination, indicating hybridizing effects with common white-flowered string is the source of its patented advantages. Genome selection scans uncovered 25 regions of 169 genes with elevated nucleotide diversity, indicating selection sweeps among groups. Functional analysis of sweep genes revealed upregulation of ribosomal, biosynthesis, and growth pathways in QingT, implicating enhanced protein production and developmental processes in its rapid growth phenotype. This study's insights comprehensively chart genomic variation during Paulownia breeding, localizing candidate loci governing agronomic traits, and underpinnings of future molecular breeding efforts to boost productivity.

9.
Waste Manag ; 182: 271-283, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688046

RESUMO

High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-·  and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.


Assuntos
Ferro , Peróxidos , Esgotos , Triclosan , Eliminação de Resíduos Líquidos , Esgotos/química , Triclosan/química , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Peróxidos/química , Poluentes Químicos da Água/química , Minerais/química , Oxirredução
10.
Water Res ; 256: 121557, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581982

RESUMO

Electrochemical anaerobic membrane bioreactor (EC-AnMBR) by integrating a composite anodic membrane (CAM), represents an effective method for promoting methanogenic performance and mitigating membrane fouling. However, the development and formation of electroactive biofilm on CAM, and the spatio-temporal distribution of key functional microorganisms, especially the degradation mechanism of organic pollutants in metabolic pathways were not well documented. In this work, two AnMBR systems (EC-AnMBR and traditional AnMBR) were constructed and operated to identify the role of CAM in metabolic pathway on biogas upgrading and mitigation of membrane fouling. The methane yield of EC-AnMBR at HRT of 20 days was 217.1 ± 25.6 mL-CH4/g COD, about 32.1 % higher compared to the traditional AnMBR. The 16S rRNA analysis revealed that the EC-AnMBR significantly promoted the growth of hydrolysis bacteria (Lactobacillus and SJA-15) and methanogenic archaea (Methanosaeta and Methanobacterium). Metagenomic analysis revealed that the EC-AnMBR promotes the upregulation of functional genes involved in carbohydrate metabolism (gap and kor) and methane metabolism (mtr, mcr, and hdr), improving the degradation of soluble microbial products (SMPs)/extracellular polymeric substances (EPS) on the CAM and enhancing the methanogens activity on the cathode. Moreover, CAM biofilm exhibits heterogeneity in the degradation of organic pollutants along its vertical depth. The bacteria with high hydrolyzing ability accumulated in the upper part, driving the feedstock degradation for higher starch, sucrose and galactose metabolism. A three-dimensional mesh-like cake structure with larger pores was formed as a biofilter in the middle and lower part of CAM, where the electroactive Geobacter sulfurreducens had high capabilities to directly store and transfer electrons for the degradation of organic pollutants. This outcome will further contribute to the comprehension of the metabolic mechanisms of CAM module on membrane fouling control and organic solid waste treatment and disposal.


Assuntos
Biocombustíveis , Reatores Biológicos , Membranas Artificiais , Reatores Biológicos/microbiologia , Anaerobiose , RNA Ribossômico 16S/genética , Metano/metabolismo , Biofilmes , Bactérias/metabolismo , Incrustação Biológica
12.
Materials (Basel) ; 17(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38673275

RESUMO

Ecological porous concrete (EPC) is one of the novel formulations of concrete with unique phytogenic properties. However, achieving both low alkalinity and high strength in EPC proves challenging due to the inherently high alkalinity of the pore environment, which hinders the growth of the plant and affects its ecological benefits significantly. This research investigated the utilization of 15 types of chemical admixtures and diatomaceous earth as alkali-reducing agents to optimize the properties of silicate cementitious materials for the applications of EPC. To identify the most effective agents, the pH value and compressive strength of the cement paste were adopted as the screening criteria for the selection of the essential alkali-reducing ingredients. Subsequently, a composite approach combining chemical admixtures and DE was employed to explore the synergistic effects on the pH and strength of silicate cementitious materials. The results revealed that a combination of 8% DE, 5% oxalic acid, and 5% iron sulfate functioned effectively and resulted in desirable performance for the concrete. This synergistic blend effectively consumed a large amount of Ca(OH)2, reducing the pH of cement paste to 10.48 within 3 days. Furthermore, the hydration reaction generated C-S-H with a low Ca/Si ratio, leading to a remarkable increase in the compressive strength of the concrete, reaching 89.7 MPa after 56 days. This composite approach ensured both low alkalinity and high strength in silicate cementitious materials, providing a theoretical basis for the application and promotion of EPC in the ecological field.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38599463

RESUMO

OBJECTIVES: The aim of the study was to evaluate the clinical performance of HBRT-H14, a real-time PCR-based assay that separates human papillomavirus (HPV) 16 and HPV18 from 12 other high-risk (HR) HPV types, in population according to Chinese guideline. METHODS: A total of 9829 eligible women aged 21-64 years from Henan, Shanxi, and Guangdong provinces were performed by HBRT-H14 testing and liquid-based cytology (LBC) screening at baseline and followed up for 3-year. The sensitivity, specificity, positive predictive value (absolute risk), and negative predictive value of LBC diagnosis and HPV testing were calculated for cervical intraepithelial neoplasia grade 2 or worse (CIN2+) Lesions. RESULTS: At baseline, 80 (0.81%) participants were diagnosed with CIN2+. HR-HPV with reflex LBC had a significantly higher sensitivity (78/80, 97.50% [95% CI, 91.34-99.31%] vs. 62/80, 77.50% [67.21-85.27%], McNemar's test p < 0.001), and a slightly lower specificity (8528/9749, 87.48% [86.80-88.12%] vs. 8900/9749, 91.29% [90.72-91.83%], McNemar's test p < 0.001) than LBC with reflex HR-HPV for CIN2+. 7832 (79.6%) participants completed 3-year follow-up and 172 (2.20%) participants were cumulatively diagnosed with CIN2+. Compared with LBC with reflex HR-HPV, HR-HPV with reflex LBC significantly increased the sensitivity (161/172, 93.60% [88.91-96.39%] vs. 87/172, 50.58% [43.18-57.96%], McNemar's test p < 0.001), but marginally decreased the specificity (6776/7660, 88.46% [87.72-89.16%] vs. 6933/7660, 90.51% [89.83-91.15], McNemar's test p < 0.001). In addition, the absolute 3-year risk of CIN2+ in HPV16/18-positive individuals was as high as 33% (80/238), whereas the risk in the HPV-negative population was only 0.16% (11/6787), much lower than those in the negative for intraepithelial lesion or malignancy population (1.21%, 85/7018). Moreover, similar results were found in women ≥30 years old. DISCUSSION: The study has indicated that HBRT-14 has a reliable clinical performance for use in cervical screening. The validated HPV test would improve the quality of population screening.

14.
Front Genet ; 15: 1333931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482382

RESUMO

Introduction: Post-transcriptional RNA modifications are crucial regulators of tumor development and progression. In many biological processes, N1-methyladenosine (m1A) plays a key role. However, little is known about the links between chemical modifications of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) and their function in bladder cancer (BLCA). Methods: Methylated RNA immunoprecipitation sequencing and RNA sequencing were performed to profile mRNA and lncRNA m1A methylation and expression in BLCA cells, with or without stable knockdown of the m1A methyltransferase tRNA methyltransferase 61A (TRMT61A). Results: The analysis of differentially methylated gene sites identified 16,941 peaks, 6,698 mRNAs, and 10,243 lncRNAs in the two groups. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially methylated and expressed transcripts showed that m1A-regulated transcripts were mainly related to protein binding and signaling pathways in cancer. In addition, the differentially genes were identified that were also differentially m1A-modified and identified 14 mRNAs and 19 lncRNAs. Next, these mRNAs and lncRNAs were used to construct a lncRNA-microRNA-mRNA competing endogenous RNA network, which included 118 miRNAs, 15 lncRNAs, and 8 mRNAs. Finally, the m1A-modified transcripts, SCN2B and ENST00000536140, which are highly expressed in BLCA tissues, were associated with decreased overall patient survival. Discussion: This study revealed substantially different amounts and distributions of m1A in BLCA after TRMT61A knockdown and predicted cellular functions in which m1A may be involved, providing evidence that implicates m1A mRNA and lncRNA epitranscriptomic regulation in BLCA tumorigenesis and progression.

15.
Front Optoelectron ; 17(1): 8, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546801

RESUMO

InGaN/GaN micro-light-emitting diodes (micro-LEDs) with a metal-insulator-semiconductor (MIS) structure on the sidewall are proposed to improve efficiency. In this MIS structure, a sidewall electrode is deposited on the insulating layer-coated sidewall of the device mesa between a cathode on the bottom and an anode on the top. Electroluminescence (EL) measurements of fabricated devices with a mesa diameter of 10 µm show that the application of negative biases on the sidewall electrode can increase the device external quantum efficiency (EQE). In contrast, the application of positive biases can decrease the EQE. The band structure analysis reveals that the EQE is impacted because the application of sidewall electric fields manipulates the local surface electron density along the mesa sidewall and thus controls surface Shockley-Read-Hall (SRH) recombination. Two suggested strategies, reducing insulator layer thickness and exploring alternative materials, can be implemented to further improve the EQE of MIS micro-LEDs in future fabrication.

16.
Environ Res ; 251(Pt 2): 118689, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493847

RESUMO

The urban competitiveness (UC) evaluation system is multidimensional and complex. This paper takes the simulated annealing (SA) model as the projection pursuit (PP) optimization to achieve a comprehensive assessment of competitiveness of 277 Chinese cities from 2011 to 2019, accompanied by energy saving and carbon-emission reduction (ESCER) as environmental measurements, to explore whether the two can meet the Porter hypothesis through coupling coordination degree (CCD). Further using spatiotemporal autocorrelation and obstacle degree model to uncover spatiotemporal features and interfering factors of coordinated development. Key findings include: (1) UC and ESCER show a slightly fluctuating upward trend during the research period, with apparent spatial variations. The eastern coastal region has a robust UC, while the less competitive central and western regions benefit from natural conditions, excelling in ESCER. (2) 87% of cities have achieved coordinated development between competitiveness and ESCER. Some coastal areas, often with a high CCD, are improving resource use efficiency and environmental benefits through economic agglomeration. From the perspective of the CCD collaboration network, the positive correlation accounts for about 85%, which reveals that most adjacent regions can cooperate on the road of coordinated development. (3) While differences exist in the coordinated development of UC-ESCER across various regions, social factors predominantly influence the obstacles affecting coordinated development. Specifically, a substantial barrier to the concordant progression of most cities is the number of patent applications, underscoring the pivotal role of innovation in aligning UC with ESCER.

17.
Bioresour Technol ; 399: 130553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460559

RESUMO

Considering the challenges associated with nitrogen removal from mature landfill leachate, a novel combined continuous-flow process integrating denitrification and partial nitrification-Anammox (PN/A) was developed using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR). In this study, IBBR successfully operated for 343 days, and when influent NH4+-N concentration of mature landfill leachate reached 1258.1 mg/L, an impressive total nitrogen removal efficiency (TNRE) of 93.3 % was achieved, along with a nitrogen removal rate (NRR) of 1.13 kg N/(m3·d). The analysis of the microbial community revealed that Candidatus Kuenenia, the dominant genus responsible for anammox, accounted for 1.7 % (day 265). Additionally, Nitrosomonas, Thauera and Truepera were identified as key contributors to the efficient removal of nitrogen from mature landfill. As a novel nitrogen removal strategy, the practical application of the IBBR system offers novel perspectives on addressing mature landfill leachate.


Assuntos
Nitrificação , Poluentes Químicos da Água , Desnitrificação , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos
18.
J Colloid Interface Sci ; 663: 1028-1034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452544

RESUMO

Aqueous ammonium-ion capacitors (AAICs) are promising for large-scale energy storage owing to low cost and inherent safety, while their practical applications are suffered from performance under extreme environment. Low ion conductivity and high viscosity, as well as freezing of the electrolyte, are the main issues for the electrochemical performance failure at low temperatures. In this work, the AAICs were assembled with commercial carbon electrodes and antifreeze electrolyte, where the electrolyte with a freezing point lower than -115 °C is developed by using Ethylenediamine (EDA) as an additive with a volume ratio of 50 % to an aqueous solution of 0.5 M NH4Cl. This antifreeze electrolyte displays a superior ionic conductivity of 8.58 mS cm-1 and a weaker viscosity of 8.16 mPa s at low temperatures. Furthermore, the spectroscopic investigations and molecular dynamics (MD) simulations demonstrate that the addition of EDA can break the hydrogen bonds of water molecules and modulate the solvation structure. Therefore, the assembled AAICs with electrolytes of 0.5 M NH4Cl (50 %-EDA) could be operated at wide-temperature conditions steadily, exhibiting excellent capacity, rate performance and good cycling stability. This work provides a simple and effective strategy for wide-temperature energy storage devices.

19.
Front Immunol ; 15: 1330678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322262

RESUMO

The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.


Assuntos
Fator 2 Relacionado a NF-E2 , Traumatismos da Medula Espinal , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismos da Medula Espinal/patologia , Apoptose , Estresse Oxidativo
20.
Microsc Res Tech ; 87(6): 1348-1358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380581

RESUMO

Wear particle-induced periprosthetic osteolysis is the key to aseptic loosening after artificial joint replacement. Osteoclastogenesis plays a central role in this process. Apelin-13 is a member of the adipokine family with anti-inflammatory effects. Here, we report that apelin-13 alleviates RANKL-mediated osteoclast differentiation and titanium particle-induced osteolysis in mouse calvaria. Mechanistically, apelin-13 inhibits NLRP3 inflammasome-mediated pyroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In summary, apelin-13 is expected to be a potential drug for relieving aseptic osteolysis. RESEARCH HIGHLIGHTS: This study reveals the molecular mechanism by which apelin-13 inhibits NLRP3 inflammasome activation and pyroptosis by promoting Nrf2. This study confirms that apelin-13 alleviates osteoclast activation by inhibiting pyroptosis. In vivo studies further confirmed that apelin-13 alleviated mouse skull osteolysis by inhibiting the activation of NLRP3 inflammasome.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Osteoclastos , Osteólise , Animais , Camundongos , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteólise/induzido quimicamente , Osteólise/metabolismo , Piroptose/efeitos dos fármacos , Ligante RANK/metabolismo , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA